

Grundlagen zur Gewässermorphologie The World of River Morphology

Dr. Roy Frings

Rijkswaterstaat Ministry of Infrastructure and Water Management The Netherlands

RWTH Aachen University Germany

Objective

To explain the basics of the field of river morphology, providing a basis for the upcoming presentations

Outline

- 1. Introduction
- 2. Geology
- 3. Sediment transport
- 4. Bed level change
- 5. Human impact
- 6. Relevance
- 7. Conclusions

Definition

River morphology is the science that studies the shaping of the Earth's surface by running water

Importance

- Societal
- Ecological

Aims

- 1. To describe
- 2. To reconstruct
- 3. To explain
- 4. To prognosticate

The Earth's tectonic plates

Convection processes

5

Mountain building

Geology

Geology

Denudation

decrease of relief

Sediment transport

Bed load

Forces

Governing the motion of sediment is the downstream force exerted by the fluid on the river bed.

 $F_{0} = F_{G}S$ $F_{G} = mg = (\rho V)g = \rho g \Delta x \Delta y H$ $F_{0} = \rho g HS \ \Delta x \Delta y$

Shear stress

Force per unit area ($\Delta x \Delta y$)

 $\tau_0 = \rho g H S$

- S = slope
- H = water depth
- g = gravitational acceleration

 ρ = density

Sediment transport

Initiation of motion

Transport capacity

$$q_b = f(\tau_0 - \tau_c)^n$$

- Sediment transport only takes place if $\tau_0 > \tau_c$
- Small increase of $\tau_0 \rightarrow$ strong increase of transport q_b

The sediment cascade

There are many sediment fluxes

The sediment budget

Input = output: Input > output: Input < output: no change sedimentation erosion

Erosion and sedimentation result in a change of the shape (morphology) of the river bed.

Humans have strongly disrupted the natural sediment dynamics of the Earth's rivers.

1. Land use change

2. River regulation

3. Sediment mining

4. Climate change

5. River restoration

River narrowing

- Increased depth
- Increased bed shear stress
- Increased transport capacity
- Disequilibrium \rightarrow erosion

Dam building

- Upstream: deposition
- Downstream: decreased sediment supply \rightarrow erosion

Very interesting:

Due to erosion the bed slope decreases, which decreases the bed shear stress and reduces the erosion rate. The river tries to find new <u>equilibrium</u>.

2

Erosion and sedimentation from a human perspective

Erosion

Infrastructure (bank erosion)

Infrastructure (bed erosion)

Water availability

Sedimentation

Shipping

С

Water and soil quality

Flood safety

Relevance

Erosion and sedimentation from an ecological perspective

- Plants and animals in rivers have specifically adapted to life in dynamic environments.
- Each species has its own special habitat requirements:
- More diversity of habitats → more different species → richer biodiversity.

Erosion and sedimentation create habitats and are essential to river ecosystems

Sediment transport is governed by bed shear stress (H and S)

Humans have strongly disrupted the world's sediment fluxes

A disbalance between sediment in- and output causes erosion or sedimentation

River strive towards equilibrium, but seldom achieve one.

Erosion and sedimentation are often problematic from a human point of view, but (in natural amounts) necessary from an ecological point of view

Sediment is the basis below all human and ecological river functions

"Flumen sanum in corpore sano"

Dr. Roy Frings